A Note on L₁-Approximations by Exponential Polynomials and Laguerre Exponential Polynomials*

D. D. Ang

Department of Mathematics, University of Saigon, Saigon, Vietnam

AND

L. KNOPOFF

Institute of Geophysics, University of California, Los Angeles 90024

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

DEFINITIONS: In this paper, an *exponential polynomial* on R_+ (the nonnegative half-line) is a function on R_+ of the form

$$\sum_{1}^{n} a_k \exp\left(-kx\right),$$

and a Laguerre exponential polynomial on R_+ is a function on R_+ of the form

 $p(x) \exp(-x)$,

where p is a polynomial (in the usual sense).

It is the purpose of this note to present a constructive approach to the L_1 -approximation of integrable functions on R_+ by exponential polynomials and by Laguerre exponential polynomials. Our study was motivated by consideration of certain systems of Wiener-Hopf integral equations with a matrix kernel, the entries of which are integrable functions on R, the real line [1]. The desirability of approximating integrable functions by exponential polynomials and by Laguerre exponential polynomials was pointed out by Gohberg and Krein [1], who observed that the "standard" factorization of a matrix, the elements of which are rational functions, can be achieved by known algebraic methods. Although consideration of Wiener-Hopf integral equations was our original motivation, the problem of L_1 -approximation by exponential polynomials is of independent interest.

* Publication No. 808, Institute of Geophysics, University of California, Los Angeles.

The problem is as follows: Given a function g in $L_1(R_+)$, find a sequence of exponential polynomials and a sequence of Laguerre exponential polynomials converging to g in the L_1 -sense. Since we can easily construct a sequence of measurable bounded functions with compact supports converging to g in L_1 , we can (and shall) assume that g is bounded and has compact support.

LEMMA 1. (i) The set of functions of the form

$$\sum_{k=1}^{N} a_k \exp(-2kx), \qquad N = 1, 2, ...,$$

is dense in $L_2(R_+)$.

(ii) The set of functions of the form

$$p(x) \exp(-2x), \quad p(x) \text{ a polynomial},$$

is dense in $L_2(R_+)$.

Proof. (i) Let u be a continuous function on R_+ with a compact support. Let $v(x) \equiv u(x) \exp(2x)$. Then v is continuous with a compact support. By the Stone-Weierstrass theorem, there exists a sequence (w_n) of functions of the form

 $\sum a_k \exp(-4kx)$ (finite sum)

which converges uniformly on R_+ to v. It follows that

$$\int_0^\infty |u(x) - w_n(x) \exp(-2x)|^2 dx = \int_0^\infty |v(x) - w_n(x)|^2 \exp(-4x) dx \to 0.$$

This proves (i), since the continuous functions with compact supports are dense in $L_2(R_+)$.

(ii) Let $u \in L_2(R_+)$ be such that

$$\int_{0}^{\infty} u(x) p(x) \exp(-2x) dx = 0$$
 (2)

for every polynomial p. Define

$$F(z) = \int_0^\infty u(x) \exp\left(-2zx\right) dx, \quad \text{Re } z > 0. \tag{3}$$

Then, F is analytic in the open right half-plane. By (2),

$$F^{(n)}(1) = 0, \quad n = 0, 1, 2, ...,$$

where $F^{(n)}$ is the *n*-th (complex) derivative of F, $n \ge 1$, and $F^{(0)}$ is F. Hence,

$$F(z) = 0 \quad \text{for} \quad \text{Re } z > 0. \tag{4}$$

In particular,

$$F(k) = 0, \quad k = 1, 2, \dots$$

By part (i), u = 0 almost everywhere. This proves (ii). Thus Lemma 1 is proved.

THEOREM 1. Let (p_n) be a sequence of functions of the form

$$p_n(x) \equiv \sum_{k=1}^n a_k \exp\left(-2kx\right),$$

or of the form

$$p_n(x) \equiv g_n(x) \exp(-2x)$$
 $(g_n(x) \text{ a polynomial})$

converging in $L_2(R_+)$ to $h(x) = g(x) \exp(x)$, where g is a measurable bounded function on R_+ with a compact support. Then the sequence (g_n) , where $g_n(x) = p_n(x) \exp(-x)$, converges in $L_1(R_+)$ to g.

Proof. We have, by Schwarz's inequality,

$$\int_{0}^{\infty} |h(x) - p_{n}(x)| e^{-x} dx \leq \left(\int_{0}^{\infty} |h(x) - p_{n}(x)|^{2} dx\right)^{1/2} \left(\int_{0}^{\infty} e^{-2x} dx\right)^{1/2}, \quad (5)$$

i.e.,

$$\int_{0}^{\infty} |g(x) - g_{n}(x)| dx \leq \left(\int_{0}^{\infty} |h(x) - p_{n}(x)|^{2} dx\right)^{1/2} \left(\int_{0}^{\infty} e^{-2x} dx\right)^{1/2}.$$
 (6)

Since the right-hand side of (6) tends to 0, the theorem is proved.

Theorem 1 allows us to construct a sequence of exponential polynomials and a sequence of Laguerre exponential polynomials converging in the L_1 -sense to g. Indeed, by Lemma 1, we can construct, by the Gram-Schmidt orthonormalization process, an orthonormal sequence (u_k) in $L_2(R_+)$ such that the sequence

$$p_n = \sum_{1}^{n} (h, u_k) u_k$$
, $n = 1, 2, ...,$

of partial sums of the Fourier expansion of h with respect to (u_k) satisfies the conditions of Theorem 1.

274

Reference

 I. C. GOHBERG AND M. G. KREIN, Systems of integral equations on a half-line with kernels depending on the difference of the arguments, *Amer. Math. Soc. Transl. Ser.* 2 14 (1960), 217-287.