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DEFINITIONS: In this paper, an exponential polynomial on R+ (the
nonnegative half-line) is a function on R+ of the form

n

I ak exp (-kx),
1

and a Laguerre exponential polynomial on R+ is a function on R+ of the form

p(x) exp (-x),

where p is a polynomial (in the usual sense).
It is the purpose of this note to present a constructive approach to the

L1-approximation of integrable functions on R+ by exponential polynomials
and by Laguerre exponential polynomials. Our study was motivated by
consideration of certain systems of Wiener-Hopf integral equations with
a matrix kernel, the entries of which are integrable functions on R, the real
line [1]. The desirability of approximating integrable functions by exponential
polynomials and by Laguerre exponential polynomials was pointed out by
Gohberg and Krein [1], who observed that the "standard" factorization of
a matrix, the elements of which are rational functions, can be achieved by
known algebraic methods. Although consideration of Wiener-Hopf integral
equations was our original motivation, the problem of L1-approximation
by exponential polynomials and by Laguerre exponential polynomials is
of independent interest.
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The problem is as follows: Given a function gin L1(R+), find a sequence
of exponential polynomials and a sequence of Laguerre exponential
polynomials converging to g in the L1-sense. Since we can easily construct a
sequence of measurable bounded functions with compact supports converging
to g in L 1 , we can (and shall) assume that g is bounded and has compact
support.

LEMMA 1. (i) The set offunctions of the form

N

I ak exp (-2kx),
k~l

is dense in L2(R+).

(ii) The set offunctions of the form

N= 1,2,... ,

p(x) exp (- 2x), p(x) a polynomial,

is dense in L 2(R+).

Proof (i) Let u be a continuous function on R+ with a compact support.
Let vex) - u(x) exp (2x). Then v is continuous with a compact support. By
the Stone-Weierstrass theorem, there exists a sequence (wn ) of functions of
the form

L ak exp (-4kx) (finite sum)

which converges uniformly on R+ to v. It follows that

r I u(x) - wn(x) exp (-2x) 12 dx = r I vex) - wn(x) 12 exp (-4x) dx -+ O.
o 0

This proves (i), since the continuous functions with compact supports are
dense in L 2(R+).

(ii) Let u E L 2(R+) be such that

{' u(x) p(x) exp (-2x) dx = 0
o

for every polynomial p. Define

(2)

F(z) = ( u(x) exp (-2zx) dx, Re z > O. (3)

Then, F is analytic in the open right half-plane. By (2),

F(n)(1) = 0, n = 0,1,2,... ,
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where F(n) is the n-th (complex) derivative of F, n ;?: 1, and F(O) is F. Hence,

In particular,

F(z) = 0

F(k) = 0,

for Re z > O.

k = 1,2,....

(4)

By part (i), u = 0 almost everywhere. This proves (ii). Thus Lemma 1
is proved.

THEOREM 1. Let (Pn) be a sequence offunctions of the form

n

Pn(x) == L ak exp (-2kx),
k~l

or of the form

Pn(x) == gn(x) exp (-2x) (gn(x) a polynomial),

converging in L 2(R+) to hex) = g(x) exp (x), where g is a measurable bounded
function on R+ with a compact support. Then the sequence (gn), where gn(x)
= Pn(x) exp (-x), converges in L1(R+) to g.

Proof We have, by Schwarz's inequality,

i.e.,

fOO I g(x) - gn(X) I dx ~ (f I hex) - Pn(x) 12 dxt2 (f e-2'" dxt2. (6)
000

Since the right-hand side of (6) tends to 0, the theorem is proved.
Theorem 1 allows us to construct a sequence of exponential polynomials

and a sequence of Laguerre exponential polynomials converging in the
L1-sense to g. Indeed, by Lemma 1, we can construct, by the Gram-Schmidt
orthonormalization process, an orthonormal sequence (Uk) in L 2(R+) such
that the sequence

n

Pn = L (h, Uk) Uk ,
1

n = 1,2,... ,

of partial sums of the Fourier expansion of h with respect to (Uk) satisfies
the conditions of Theorem 1.
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